

LM1512 AUTOMATIC LABEL APPLICATOR OPERATIONS MANUAL

Manufactured in USA by: LabelMill, Inc. 2416 Jackson St. Savanna, IL 61074 (800) 273-4707 info@labelmill.com www.labelmill.com

TABLE OF CONTENTS

SECTION	PAGE
1. APPLICATOR OVERVIEW Introduction General Applicator Specifications Inventory List User Responsibility/Safety	4 4 5 6
2. WEBBING, SETUP AND GENERAL OPERATION LM1512 Component Description Web Routing Label Sensor Adjustment Drive Motor Pack T-150 Mounting Stand (optional) T-Stand Adjustment	8 9 11 15 17 18
3. SETUP & ADJUSTMENT Optional Valve Pack Tamp Assembly & Factory Setup Flag Assembly & Factory Setup Synchronous Feed & Factory Setup	20 21 22 23
4. PROGRAMMING AND CONTROL OPERATION Operator Interface Console (HLI-100) Accessory Connections Photo Eye Trigger & Wiring Programming Programming Flow Chart Main Displays Key Definitions Quick Start & Manual Setup Set Up of Key Features Input & Output Description How To Set Labeler Communications Address	25 26 27 28 32 34 44 45 46 56 63
5. TROUBLE SHOOTING & MAINTENANCE General Cleaning & Maintenance Troubleshooting Fault Codes Replacing the Main Power Fuse	65 66 67 68

SECTION 1

APPLICATOR OVERVIEW

Introduction	4
General Applicator Specifications	4
Inventory List	5
User Responsibility & Safety	6

LABELMILL LM1512 Servo drive label applicator

The LabelMill LM1512 is a state of the art, high speed, heavy-duty industrial Label Applicator. High-speed label applications to 2300 linear inches of label web per minute is combined with an exceptional placement accuracy of up to +/- 1/32", with its wipe-on method of application. Products may be labeled in any attitude (top, side or bottom) when used in conjunction with available product handling systems. Outboard-supported drive roller to minimize vibration induced label misplacement. Heavy duty Servo motor drive. Hardened steel peeler plate for reduced wear with high-speed continuous label application. Adjustable label sensor for expediting changeover without sacrificing accuracy. The LM1512 is transferable from one production line to another when mounted on the LabelMill Model T-150 Stand. The Model LM1512 Applicator is of modular design and features rapid changeover from a wipe-on system to a tamp system using the same applicator platform and controller. The microprocessor controls the servomotor for accurate and consistent label placement. The control has a digital LCD display and key pad for ease of set-up to include RPM, product delay, batch count, total count, tamp duration and more.

SPECIFICATIONS

Size:	26"H x 32"W x 23"D Weight – 50-60lbs
Electrical:	115V AC, 60 Cycle, 10 Amps
Product Sensing:	Photoelectric or Mechanical Limit Switch
Label Roll Size:*	12" Max Outside Diameter, Wound on 3" I.D. core
Labeling Speed:	1600 Linear Inches of Web Per Minute, Standard
Label Style Requirements:	Die-Cut, Waste Removed, with Minimum of 1/8" Separation Between Labels in Running Direction
Label Placement Accuracy:	Up to +/- 1/32" When Labels are Produced to Specifications and Product Handling is Controlled
Options:*	Right or Left Handed, Wipe-On, Tamp, Flag or Corner-Wrap
Standard Label Sizes:*	4.5" Wide, 12" Long
Optional lengths and sizes available	

*Customs Available

STANDARD INVENTORY LIST

QTY. Description

- 1 Applicator Assembly
- 2 12-¹/₂" dia. Blue Plastic Spools w/ Quick Release Collar
- 1 Take-Up Spool w/ Clip
- 2 ¹/₂" 13 Bolts w/ Washers
- 1 12' Power Cord
- 1 Product Switch (Manual Limit Switch/Photo Switch as Specified)
- 1 Label Applicator Module
- 1 Electronic Label Sensor
- 1 Model LM1512 Operators Manual

USER RESPONSIBILITY

This equipment will perform in conformity with the description thereof contained in this manual and accompanying labels and/or inserts when installed, operated, maintained, and repaired in accordance with the instructions provided. This equipment must be checked periodically. Defective equipment should not be used. Parts that are broken, missing, plainly worn, distorted, or contaminated should be replaced immediately. Should such repair or replacement become necessary, we recommend that a request for service advice be made.

This equipment or any of its parts should not be altered without the prior written approval of MM2, Inc. The user of this equipment shall have the sole responsibility for any malfunctions which results from improper use, faulty maintenance, damage, improper repair or alteration by anyone other than MM2, Inc. or a service facility designated by MM2, Inc.

SAFETY

Only qualified personnel should use this equipment.

Before installing, inspecting or servicing equipment, turn OFF all power and air controls at the source and lock out in accordance with OSHA Standards.

Be sure all external electrically conductive parts are connected to a good electrical ground.

Never handle live electrical equipment with bare hands while standing in water, or while hands and feet are wet. Dangerous electrical shock can result.

Whenever the equipment is unattended, turn off all control and power supply switches.

Keep equipment clean and in good operating condition. Promptly repair or replace all worn or damaged hoses, cables or parts.

Do not make any repairs to equipment unless you are fully qualified.

This equipment contains fast moving parts, which may move without warning. Keep hands, loose hair and clothes clear of machines at all times.

Never place hands or any other body parts under the label platen at any time.

This equipment uses compressed air. Proper care and maintenance must be taken when handling compressed air and its components.

These precautions are further detailed and explained where specifically required in this manual.

READ AND UNDERSTAND THESE INSTRUCTIONS

Protect yourself and others. Be sure this information is read and understood by all operators.

ELECTRICAL SHOCK CAN KILL!

Do not touch live electrical parts with bare skin or work with gloves or wet clothing.

NOISE CAN DAMAGE HEARING!

Wear proper ear protection.

ABEL MIL

SECTION 2

WEBBING, SETUP AND GENERAL OPERATION

LM1512 Component Description	8
Web Routing	9
Label Sensor Adjustment	11
Drive Motor Pack	15
T-150 Mounting Stand (option)	17
T-Stand Adjustment	18

COMPONENT DESCRIPTION

NOTE: LM1512 SYNCHRONOUS FEED CONFIGURATION (LEFT HAND) SHOWN FOR REFERENCE ONLY

- 2 Feed the web to the right and under the idle roller (B).
- 3 Feed the web up and over brake arm roller (C).
- 4 Feed the web under roller (D), and over roller (E). Feed web through label sensor.
- 5 Wrap the web around peeler plate (F) and pull the web back towards pinch assembly.
- 6 Feed the web over drive roller (G), between both rollers, and under pinch roller (H)
- 7 Finish the process by loading the waste backing paper onto the web take-up shaft (I) . Install the take-up spool clip over the end of the waste backing paper. The take-up spool rotates in a counter-clockwise direction.
- 8 Adjust the plastic web guide clips so the web is guided straight and even. Make sure the clips do not bind the web.
- 9 Lock the wiper assemblies with light tension, and close the pinch roller assembly.

** To remove the label storage spool (A), turn the spool lock counterclockwise until you reach a stop. The spool will now slide off. To secure the spool, simply turn the spool lock clockwise until snug. DO NOT over tighten!

WEB ROUTING

(Right Hand - Tamp Configuration)

Step Operation

- 1 Load web onto label storage spool (A) so it unloads in a clockwise direction.
- 2 Feed the web to the right and under idle roller (B).
- 3 Feed the web up and over brake arm roller (C).
- 3 Feed the web down and over guide roller (D) and through wiper assembly (E).
- 4 Feed the web under idle roller (F), continuing around peeler plate (G).
- 5 Ensure web is fed between the peeler plate and air assist tube. Feed the web under idle roller (H), and continue up to the pinch assembly.
- 6 Feed the web over drive roller (I), between both rollers, and under pinch roller (J)
- 7 Finish the process by loading the waste backing paper onto the web take-up spool (J).
- Install the take-up spool clip over the end of the waste backing paper. The take-up spool rotates in a counter-clockwise direction.
- 8 Adjust the plastic web guide clips so the web is guided straight and even. Make sure the clips do not bind the web.
- 9 Lock the wiper assemblies with light tension, and close the pinch roller assembly.

** To remove the label storage spool (A), turn the spool lock counter-clockwise until you reach a stop. The spool will now slide off. To secure the spool, simply turn the spool lock clockwise until snug. DO NOT over tighten!

The label web must be fed through the label sensor slot to detect the label. Once the system is webbed with labels, loosen the thumbscrew that mounts the label sensor, and slide it into the web.

Manual adjustment of the label in relation to the peeler plate is achieved by loosening the thumbscrew on the label sensor bracket and sliding the assembly up or down on the peeler arm rail.

Once the label sensor is manually adjusted, calibrated correctly, and properly configured in the control, trigger the applicator to test the position of the label in relation to the peeler plate.

The label position should be adjusted so that the label stops at the edge of the peeler plate. If the label is not fully removed from the liner, or if the label has fed out too far past the edge of the peeler plate, additional adjustment is required.

NOTE: The label sensor setting must be set to "CLEAR" in the Label Sensor program menu for the standard label sensor to function properly.

Z-Z-ELS100 LABEL SENSOR CALIBRATION INSTRUCTIONS

Teach Mode Setup Procedure:

- Place the web liner in the sensor (remove a label or use the label gap). Press the [+] and [-] buttons at the same time for less than one second. The red LED will begin to flash.
- Place the web liner, <u>with a label</u>, in the sensor. Press the [-] button for less than one second. The red LED will stop flashing.
- 3. The automatic setup is complete. (Steps 1 and 2 can be reversed)

Manual Sensitivity Adjustments:

The "Teach Mode Setup" should always be successful. However, the sensitivity can be adjusted manually by pressing the [+] or [-] buttons. The red LED will flash with each button press.

Locking/Unlocking the Setup:

Press and hold the [+] and [-] buttons for three seconds (but less than six seconds). The red LED will change state. When the buttons are released, the red LED will then indicate locked (red LED on) or unlocked (red LED off).

Light/Dark Switching:

Press and hold the [+] and [-] buttons for six seconds. When the mode is changed, the red LED will begin to flash slowly until the buttons are released.

OPTIONAL MECHANICAL CLEAR LABEL DETECTOR

The Mechanical Clear Label Detector comes preset from the factory and should require no adjustment. If there is a need to readjust the sensor, the following is a guide:

Move the label stock until the gap between the labels are centered under the Star Wheel and the star wheel is laying flat on the label stock as shown above. This can be accomplished by unwinding the label storage spool enough to make the web "loose". To test adjustment, move the label stock gap back and forth under the photo eye slowly. The star catches the edge of the label stock and flips from one flat to the next. The star wheel detects the gap between the labels by catching the edge of the label as it is fed. When the star wheel catches the edge of the label, the wheel will stop sliding and rotate. The diameter across the flats of the star wheel is smaller than the diameter across the points. When the star wheel rotates, the micro switch is activated indicating the gap in the label stock.

If double or multiple label feeding occurs, and the micro switch is always activated, loosen the adjustment nuts and slide the micro switch up away from the label.

If double or multiple label feeding occurs, and the micro switch never activates, loosen the adjustment nuts and slide the micro switch down towards the label.

LABEL PLACEMENT IN RELATION TO THE PEELER PLATE:

Loosen the lock screw on the **Mechanical Label Sensor Assembly** and slide it forward or backward on the adjustment rails to achieve placement of the label with the peeler plate nose (+/- 1/32). After adjustment, cycle the labeler to verify new label placement.

OPTIONAL ELECTRONIC CLEAR LABEL DETECTOR (ECLD)

Description

The Z-Z-ELC300 Label Sensor uses capacitive technology to sense label edges for registration, counting, splice detection or other applications. Capacitive technology provides the fastest and most accurate edge detection method available.

Setup

- 1. Web must remain in contact with the base/mounting plate during operation.
- 2. Label must pass under the [-SENSOR-] indicator.
- 3. Small labels should be centered under the [-SENSOR-] indicator.
- 4. When properly setup, the lights in the gray LABEL area will be on when a label is present, and lights in the gray GAP area will be on when a gap is present.
- 5. All lights flashing rapidly indicates over-current condition, likely caused by wiring error.

AutoGap Setup

- 1. Start with High Gain off.
- 2. Remove a label from the web.
- 3. Place the area of the missing label in the sensor (liner only).
- 4. Press for at least 1 second (lights begin to move back and forth).
- 5. Release the button.
- 6. Setup complete.
- Verify the light bar goes into the gray GAP area during gaps between labels and into the gray
 LABEL area during labels. If necessary, use arrow keys to adjust manually. If the light bar is not moving at least three or four lights, turn on High Gain.

Manual Adjustment

When running, the light bar should extend from the gray LABEL area to the gray GAP area. The up and down arrows can be used to fine tune the adjustment if necessary. If the adjustments reach the end of their range, the last light in the GAP or LABEL area will flash three times when the button is pressed. The light bar may move toward LABEL while the Up arrow is pressed. This is because the sensor body is deflecting and making the slot smaller. It will return when the button is released and will not affect setup.

Sensor Configuration

Light/Dark Switching: In "Light" switching mode, the sensor outputs are active/on during the gap. In "Dark" switching mode, the sensor outputs are active/on during the label. Switch modes by pressing the button. Do not change while running.

High Gain Mode

Only use High Gain mode when necessary. Very small or very thin labels may not consistently move the light bar between the LABEL and GAP areas. In this case, use the High Gain mode by pressing the button. Do not change while running. AutoGap must be performed after activating High Gain.

Metal/Foil Label Setup

AutoGap Setup on a missing label area may not work reliably for rectangular metallic labels (foil or metalized Mylar). In this case, place an actual gap in the sensor (use alignment groove on the sensor). Then hold the Gap button down for AutoGap as above. Move labels slowly through the sensor. Use manual adjustments if necessary to ensure the light bar is in the LABEL area during labels and GAP area during gaps.

ſ	0
	HIGH GAIN

USER'S MANUAL

LM1512 DRIVE MOTOR PACK ASSEMBLY (PN: AC-F-A0011)

To increase waste web tension, move the lock collar 1/32" away from the take-up spool, compressing the spring.

CAUTION! Too much web tension may cause web breakage, label drifting or premature failure of the take-up spool assembly.

ADJUSTING THE WEB TENSION

If the web tension becomes too loose or too tight, adjustment of the clutch may be required. To adjust the clutch remove the motor pack cover plate by removing the (2) cap head bolts.

To reduce waste web tension, move the lock collar 1/32" away from the take-up spool. To increase waste web tension, move the lock collar 1/32" toward the take-up spool.

CAUTION! Too much web tension may cause web breakage, label drifting or premature failure of the take-up spool assembly.

T-150 MOUNTING STAND

(OPTIONAL)

T-STAND ADJUSTMENT

To adjust the T-150 mounting stand, simply loosen the column lock and adjust to the desired height by turning the column crank. Be sure to lock the column lock when finished.

SECTION 3

SETUP & ADJUSTMENT

Valve Pack	20
Tamp Assembly & Factory Setup	21
Flag Assembly & Factory Setup	22
Synchronous Feed (Wipe-On) Assembly	23

VALVE PACK

(Not Included in Synchronous Feed Configuration)

There are solenoid valves associated with applicators using pneumatics. They are supplied with pre-wired cables that connect to the necessary components.

There is an adjustment for airflow for each valve. This will change the rate at which air will flow through each valve. It may be necessary to adjust each valve for optimum performance after installation. The adjustments are performed as shown below.

(Pictures may not show actual model)

FLOW CONTROLS (Tamp & Corner-Wrap Applications)

Control A: This is used to adjust the speed that the tamp cylinder moves in the upward direction. Control B: Controls the tamp cylinder in the downward direction.

VACUUM REGULATOR

The vacuum regulator is used to control the vacuum that is used to hold the label to the flag jaws or the tamp pad.

AIR ASSIST REGULATOR

The air assist regulator is used to change the pressure that is applied to the blow tube. The blow tube is below the front edge of the peeler plate and is used to help "push" the label onto the bottom of the tamp pad or the flag jaws.

FLAG REGULATOR (Only present if configured with flag applicator head)

The flag regulator is used to adjust the pressure that the flag jaws apply to the label as it is applied.

Tamp Assembly & Factory Setup

NOTE: PICTURES SHOWN MAY NOT RESEMBLE YOUR MODEL

Tamp pad adjustment

- 1. To adjust the tamp pad (T) in relationship to the peeler plate (P) in the horizontal plain, loosen the (2) buttonhead screws and move the peeler plate forward or backward in the slots. There should be approximately 0.020" (A) gap between the tamp pad (T) and the peeler plate (P).
- 2. To adjust the tamp pad (T) in relationship to the peeler plate (P) in the vertical position, loosen the hinge thumbscrew, swing the tamp assembly out, and loosen the (4) cap head bolts that secure the tamp mount assembly in place. Adjust the up or down to achieve the 0.020", tighten the (4) bolts, and secure the tamp assembly in place by tightening the thumbscrew. This adjustment is very important! If this is not adjusted properly, the label will run into the back of the tamp pad (T) and fold or bunch up.

Air assist tube adjustment

- Adjust the air assist tube (B) so that the small holes aim towards the center of the tamp pad. The air assist tube (B) aids the label to adhere to the bottom of the tamp pad (T). Once the label (L) is "blown" onto the tamp pad (T), it is held there by vacuum.
- Once the above adjustments are made, adjust the vacuum regulator, the air assist regulator, and the flow controls as described on page 20.
 Note: Too much pressure on the air assist will cause the label to flutter and/or blow off of the vacuum platen.

Flag Assembly & Factory Setup

NOTE: PICTURES SHOWN MAY NOT RESEMBLE YOUR MODEL

Label jaw to peeler plate clearance and maximum cylinder travel

To adjust the label jaws (J) in relationship to the peeler plate (P), the cylinder mounting plate (C) and the shaft collars (S) must be adjusted accordingly. The cylinder mounting plate (C) is used to adjust the gap between the peeler plate and the label jaws (A). The shaft collars (S), along with the air valves, are used to adjust the label jaws maximum travel.

- 1. To adjust the label jaws to peeler plate clearance (A), loosen the two button head cap screws and adjust the cylinder mounting plate to reach the desired 0.020" (A) clearance.
- 2. After this is set, retighten the cap screws. The dimension (A) should now be double-checked to insure proper clearance. This adjustment is very important! If this is not adjusted properly, the label will run into the back of the label jaws (J) and fold or bunch up.

Air assist tube adjustment

- Adjust the air assist tube (B) so that the small holes aim towards the center of the label as shown by the arrowhead shown above. The air assist tube (B) aids the label to adhere to the bottom of the label jaws (J). Once the label is "blown" onto the label jaws (J), it is held there by vacuum.
- 2. Once the above adjustments are made, adjust the vacuum regulator, the air assist regulator, and the flow controls.

Note: Too much pressure on the air assist will cause the label to flutter and/or blow off of the vacuum platen.

Peeler Plate (P)

USER'S MANUAL

Synchronous Feed Assembly & Factory Setup

Mounting Screw (S)

Peeler Plate Adjustment (used to adjust tracking)

- 1. Loosen the mounting screws (S) and slide the peeler plate (P) in the direction needed to make the label web track in the desired direction.
- 2. Retighten the mounting screws (S) to secure the peeler plate (P) after adjustments are made.
- 3. Now that the plate is adjusted, test run the machine to see if the web tracks correctly.
- 4. Adjust the wipe brush assembly (W) to apply pressure to the product to assist in adhering the label.

NOTE: If the web tracks towards the back plate, adjust the end of the peeler plate (P) that is closest to the back plate away from the back plate or the opposite end toward the back plate. Adjust the peeler plate (P) in the opposite direction if the web tracks away from the back plate.

SECTION 4

PROGRAMMING AND CONTROL OPERATION

Hand-Held Labeler Interface HLI-100	25
Accessory Connections	26
Control Accessory Connections	27
T-52 Photo Eye (System Trigger)	28
System Setup - Programming	32
Programming Flow Chart	34
Key Definitions	44
Set Up of Key Features	45
Quick Start & Manual Setup	46
Input & Output Description	56
How To Set Labeler Communications Address	63

HAND HELD LABELER INTERFACE

ACCESSORY CONNECTIONS

CONTROL BOX LOCATED ON BACK OF LABELER BACK PLATE

T-52 EXTERNAL PHOTO-EYE

• The T-52 External Photoeye is used to automatically trigger the labeling system. The photoeye needs to be mounted properly to provide a consistent trigger signal, and can be adjusted to properly sense the presence of a product. Additional options are available.

SYSTEM SETUP

PROGRAMMING

All programming is performed via the **HLI-100** input device. All programmed settings are backed in nonvolatile memory and are not lost when the unit is powered off.

Upon power up of the control, the screen will display *MODEL NUMBER* & *REVISION* of the HLI-100 and then the *MODEL NUMBER* & *REVISION* of the labeler control. After this, the screen will now display the counter, *TOTAL XXXXXXX*.

• KEY FUNCTIONS:

"PROG" PROGRAM KEY IS USED TO:

1. Enter and exit the program menu.

"ENTER" KEY IS USED TO:

- 1. Access or "Enter" the selected "PROGRAM BLOCK". (example PRODUCT SENSOR or TAMP SETUP)
- 2. Access or "Enter" the *data selection/options* line (bottom line of display) of the "PROGRAM BLOCK" *Sub Menus.*
- 3. Store the selected data.

UP / DOWN ARROW KEYS ARE USED TO:

- 1. Scroll up & down through the primary menu "PROGRAM BLOCKS". (Header name)
- 2. Scroll sub menus inside of "PROGRAM BLOCKS". (top line of display while IN a "PROGRAM BLOCKS")
- 3. Increment and decrement programmable values.
- 4. Select different display views while in the "RUN" mode.

Left / Right ARROW KEYS ARE USED TO:

1. Move the "up carrot" left or right when programming a value.

START / ENABLE KEY:

- 1. Start key will initialize the application cycle.
- 2. Enable key will "Enable" the drive after it has been disabled.

CLEAR / STOP KEY:

- 1. Stop key will abort the cycle only when not in the program menu.
- 2. Clear key will delete stored values while in the edit mode.
- 3. Clear key will disable the drive.

ESC (escape) KEY:

1. Will back out of the sub programming menu without saving changes.

• PASSWORD

The PASSWORD is used to lock the menus of the control. This option is used to prevent unauthorized access to variable data. When shipped from the factory, the password is to 7074 and NO MENUS are locked. The password cannot be changed.

• AUTO SETUP ***NO LONGER USED IN SYSTEMS MANUFACTURED AFTER 2020***

The AUTO SETUP function is used to determine the length of the label, gap length, recommended maximum speed, and set label sensor values. (Note that when using a Clear label detector the sensor values are not relevant) In this mode the applicator will feed 2 - 6 labels to auto set parameters explained above.

• PRODUCT SENSOR

This is an external device that when "activated" starts the application cycle.

PROGRAMMABLE BLOCKS:

Product Delay – Delays the application of the label (x) seconds after the sensor has been activated.** Detector Lockout – Used with an external encoder to ignore trigger signals for programmed distance. Sensor Trigger –Whether the product sensor is activated at the leading or trailing edge of product. On Debounce – Programs how long (seconds) a trigger signal must be received before activating applicator. Off Debounce – Used to ignore trigger signals (in seconds) after a cycle has completed. Multiple Feed – How many labels are applied to one product with one signal (reset when signal is toggled) Interval Delay – amount of time in seconds between multiple fed labels. **Note**: Only active if quantity 2-10.

** Note: The product delay feature will not work when the "Conveyor Lock" feature is activated. Use TRIGGER DISTANCE and/or with the ENCODER turned on. The "INTERVAL DELAY" display will be replaced with DIST 0 to 2, DIST 0 to 3, DIST 0 to 4, etc. The interval between labels will use distance instead of time in this mode.

• TAMP SETUP

This is used to adjust the different variables related to the tamp cycle.

PROGRAMMABLE BLOCKS:

Tamp Duration – Used to adjust the time that the tamp cylinder valve is actuated. (0.000 to 24.000). Flag Duration – Used to adjust the time the flag jaws are held open after label application.(0.00 to 9.99). Head Up Switch – Options: **normally open-**standard, none

Head Up Debounce – Debounce is used to allow time for the tamp cylinder to settle on return. (0 to 0.5 sec). Vacuum Release – Used to release label when tamping on light products.

Vacuum Delay On – Used to reduce label flutter when feeding large labels while tamping.

Tamp Sync Logic – Used to interface a printer for loop print and apply.

• LABEL SPEED

This is used to set the speed that the label is fed.

PROGRAMMABLE BLOCKS:

Inches per minute – feeds the label at (x) inches per minute. Acceleration (MS) – sets the time that the motor takes to achieve full speed in (x) milliseconds. Left / Right Hand - Sets the direction of the motor pack assembly (password required)

Note: If acceleration is set too low (Quick) following errors may occur.

• COUNTERS

Used to reset and set the internal counters of the control.

PROGRAMMABLE BLOCKS:

Total counter – resets the total counter to zero. Batch counter – resets the batch counter to zero. Batch counter set – sets the total number of labels to be applied in 1 batch. Life counter – displays the total number of controller cycles, cannot be reset.

(Note that when the batch counter expires the batch done output is activated.)

• LABEL SENSOR

Provides the ability to select different label sensor types and also set the parameters within these sensor types.

PROGRAMMABLE BLOCKS:

I-Mark/Gap/CLR – used to select type of label sensor; "I-MARK", "Gap" & "Clear" labels (special sensor) Manual Set Gap – automatically sets the emitter voltage when sensor is held on gap between label stock. - Not used in systems manufactured after 2020.

Gap Threshold – voltage differential needed to trigger control. (sensitivity)

Label Length – Program length of the label.

Label Gap Length – Program length of the gap between labels.

Label Auto Position - maintains label position on peeler plate at different label speeds automatically.

Stop Comp Dist - Calculated distance used in the Label Auto position feature.

Label Stop Position – Electronically adjusts label stop position in reference to the peeler plate point.

Missing Label Detect – Turns on the missing label alarm & enables the auto advance feature.

Missing Label Comp – automatically advances the web to compensate for a missing label.

Labels To Peeler – Program number of labels from label sensor to peeler point.

• ENCODER

Provides a more consistent way to apply labels to a product. With this option a distance from the trigger point can be set at which the label is to be applied. Note: optional encoder must be used with this feature.

PROGRAMMABLE BLOCKS:

Encoder – used to turn the encoder option on or off.

Conveyor Lock – locks the applicator speed with the conveyor speed.

Enc Override – Allows fine-tuning of the ratio of applicator speed to conveyor speed.

Trigger Distance – used to apply the label a certain distance away from the trigger point.

Trigger Mode - Select Product Delay or Distance.

Start Comp Dist - Start Compensation Distance used to compensate for variable speed applications.

Stop Comp Dist – Stop Compensation Distance used to compensate for variable speed applications.

Max Conveyor IPM - Programs the maximum conveyor speed (up to 1600 inches / minute).

Enc lines/inch - Programs how many pulses the encoder will count with 1"of travel. (25 to 500 counts / inch).

• CYCLE TYPE

Determines the application type and sequence in relation to the label.

PROGRAMMABLE BLOCKS:

No Tamp (Used for Synchronous Feed (Wipe-On) Applications Tamp Before Feed - Tamp cylinder will cycle before a label is fed onto vacuum platen. Tamp After Feed - Tamp cylinder will cycle immediately after a label is fed onto vacuum platen. Blow Before Feed - Blow cycle will activate before the next label is fed onto the vacuum platen. Blow After Feed - Blow cycle will activate immediately after a label is fed onto the vacuum platen. Pre-Print Tamp - External pre-print trigger will feed label. Secondary trigger will apply label. Pre-Print Blow - External pre-print trigger will feed label. Secondary trigger will apply label. Clamshell Before Feed - Tamp cylinder will cycle before a label is fed onto vacuum platen.

• PRINTER SETUP

Provides printer and cycle control when the applicator is loose looped with a print engine

PROGRAMMABLE BLOCKS:

Printer - On/Off (Selecting "On" will activate the following menu options)
>=Print Label - Sends a Print Command to the connected print engine.
<=Cycle No Print - Activates a label application cycle without triggering a print command to the engine.
Printer Enable - Turn the external printer option on or off.
Print Repeat - Turn the printer repeat option on or off.
Print Fault Timer - Programmable timer for fault if end of print signal is not received from printer.

Note: These options are used to position a printed label to the peeler plate for live production operation

• ALARMS

Used to trigger an alarm, light, etc. when the web is broken or miss feed of a label.

PROGRAMMABLE BLOCKS:

Feed Error on/off – Used to turn on and off the option if so equipped. In order for this option to work, the tamp pad must be outfitted with a special fiber-optic assembly. This will allow the labeler to detect the feed of the label onto the tamp pad and that the label left the tamp pad during the tamp cycle. Should an error in either one of these conditions occur, the error message "FEED ERROR" will be displayed.

• JOB STORAGE

Used to store frequently used settings pertaining to different labeling jobs. Up to 6 Jobs can be stored.

PROGRAMMABLE BLOCKS:

Restore Job – Stores settings for selected job. Save Job – Allows operator to select 1 of the optional 6 stored jobs. Delete Job – Allows operator to delete a stored job.

• DEFAULT SETTINGS

This setting will return the controller to the default settings.

• I/O STATUS

Displays the status of the inputs and outputs.

PROGRAMMING FLOW CHART

MAIN DISPLAYS

The following flow charts show the main display menus and sub-menus. To access the program menu, press the Prog / Run key on the HLI-100 input device.

LM1512 Servo Drive Label Applicator

USER'S MANUAL

KEY DEFINITIONS

- ASYNCHRONOUS OPERATION The term "ASYNCHRONOUS OPERATION" is used because the speed
 of the applicator motor (label speed) does not necessarily match the speed of the product conveyor. In other
 words their speeds are set independently of one another and have NO interrelation. An example of this is
 when the applicator is configured in the tamp mode.
- SYNCHRONOUS OPERATION The term "SYNCHRONOUS OPERATION" is used because the speed of the applicator motor (label speed) is matched to the speed of the product conveyor. In order to accomplish this, an encoder is used to monitor the speed and distance the product conveyor travels. In order for this feature to function the "CONVEYOR LOCK" mode must be turned on. In synchronous operation, the applicator motor is ELECTRONICALLY GEARED to the product conveyor.
- START COMPENSATION Start compensation compensates for the reaction time of the LabelMill control and start signal from the product switch. The purpose of start compensation is to maintain label placement on a product that is traveling at different speeds. An example of this is a conveyor that accelerates on start up and decelerates to a stop. At high speeds an uncompensated system would apply a label too late and the label would be placed too far back on the product. Linear interpolation is used to correct this problem. The start compensation corrects this error by adding an offset distance at LOW speeds, since it is not possible to apply any correction at high speed. Note: Start compensation ONLY effects label placement on product.
- STOP COMPENSATION Stop compensation is used to correct the LabelMill application head ONLY. The
 reaction time of the LabelMill control and label sensor is corrected. The purpose of stop compensation is to
 maintain label placement at the peeler plate when the label web is traveling at different speeds. An example of
 this is when the applicator is synchronous feeding a label onto a product on a conveyor that accelerates on
 start up and decelerates to a stop. At high speeds, an uncompensated system label would stop past the peeler
 plate end. Linear interpolation is used to correct this problem. The stop compensation corrects this error by
 adding an offset distance at LOW label feed speeds, since it is not possible to apply any correction at high
 speed. Note: Stop compensation ONLY effects label stop position relative to peeler plate and is
 normally ONLY used in synchronous feed with conveyor lock on.
- ELECTRONIC GEARING Electronic gearing is a function of the product encoder and the LabelMill control. This is used to match the speed of the applicator to the product conveyor. Electronic gearing is similar to mechanical gearing in that there is a gear ratio and the change of speed of one affects the speed of the other. This feature is part of the Synchronous feed mode. In order for this to operate properly, the correct number of lines per inch of product travel must be entered into the ENC LINES/INCH in menu #6.
- ENCODER AN ENCODER is a device that is used to monitor the speed of an external device like a product conveyor. The reason this speed is monitored is to match the speed of the label applicator to the product speed. An encoder uses "LINES or COUNTS" per revolution in order to track speed and distance. Note that lines per revolution are also referred to as counts per revolution. These counts are feed into the LabelMill control to be processed for the different features that require this feedback.

- ENCODER OVERRIDE This feature is used in conjunction with ELECTRONIC GEARING. This feature is used to fine-tune the ratio of the applicator to the product conveyor.
- TRIGGER DIST TRIGGER DISTANCE is used in conjunction with the encoder feature. Trigger distance is similar to product delay in that it is used to electronically move the placement of the label on the product. When the encoder feature is used, the product delay feature is rendered inactive. Trigger distance will move the label placement in inches (00.00).
- PRODUCT DELAY is NOT used in conjunction with the encoder feature. Product delay is similar to trigger distance in that it is used to electronically move the placement of the label on the product. Product delay will move the label placement in time (00.000) seconds. Because the product delay feature utilizes time, the speed of the product MUST remain constant. A product traveling at a higher velocity will travel further in a given time, thus effecting the placement of the label.

QUICK START GENERAL SETUP

- 1. Inspect applicator system and verify all cables are installed properly.
- 2. Web system with labels.
- 3. Turn power switch on.
- 4. Press "PROG" key to enter setup menu.
- 5. Use up or down arrows to reach "CYCLE TYPE" menu.
- 6. Press "ENTER" key on "CYCLE TYPE".
- 7. Select "No Tamp" option and press "ENTER" key to save.
- 8. Use up or down arrows to reach "LABEL SENSOR" menu, and press "ENTER" key.
- 9. Use up or down arrows to reach "I-MARK / GAP / CLEAR" menu, and press "ENTER" key.
- 10. Use up or down arrows to reach "CLEAR" option, and press "ENTER" key.
- 11. Press "PROG" key to exit the programming menu and return to main screen.
- 12. Cycle system twice by pressing the "START" key.
- 13. Observe label speed and change if required.
- 14. Manually move the label sensor if needed so that the label stops flush with the peeler plate tip.

System is now ready for set up of advanced features & options.

SETUP OF KEY FEATURES

PRODUCT DELAY

PRODUCT DELAY is NOT used in conjunction with the encoder feature. Product delay is similar to trigger distance in that it is used to electronically move the placement of the label on the product. Product delay will move the label placement in time (00.000). Because the product delay feature utilizes time, the speed of the product MUST be constant and consistent.

- 1. Set basic applicator up first, refer to quick setup
- 2. Ensure that applicator is operating properly before starting this procedure.
- 3. Ensure ENCODER is set to "OFF".
- 4. Set Product delay to 00.000
- 5. Start system and apply label at the desired speed.
- 6. Check the placement of the label on the product.
- 7. Measure the OFFSET of the label placement. Note: A label CAN NOT be advanced on the product ONLY moved "back" since the applicator can only delay the product signal.
- 8. Apply a small delay to the product delay or if too great, it may be necessary to physically move the product switch. Keep product delays to a minimum for best results.
- 9. Operate system again and measure offset.
- 10. Apply a small delay to the product delay or reduce if too much.
- 11. Test again, repeat if necessary until label is in proper registration.

LABEL STOP POSITION

LABEL STOP POSITION is used to electronically move the stop position of the label on the applicator ONLY. The setup below describes how to use the LABEL STOP POSITION in ASYNCHRONOUS operation ONLY. For SYNCHRONOUS setup operation, refer to STOP COMP DIST section.

- 1. Set basic applicator up first, refer to quick setup.
- 2. Set MISSING LABEL to "OFF".
- 3. Set CONVEYOR LOCK "OFF".
- 4. Set LABEL AUTO POSN to "OFF". (label auto position)
- 5. Set STOP COMP DIST to 0.000
- 6. Operate applicator at desired label speed.
- 7. Manually move the label sensor to adjust the label stop position or the label stop position can also be electronically adjusted using the LABEL STOP POSITION. The proper stop position will be with the leading edge of the label stopping flush with the tip of the peeler plate. If this option is used the distance must be kept to a minimum. Adjusting the stop position using the LABEL STOP POSITION is NOT recommended when utilizing the STOP COMP DIST feature.
- 8. Operate the applicator again at the same speed.
- 9. Measure the offset in label stop position. Enter the measured offset into the LABEL STOP POSITION.
- 10. Operate system at the same speed again and check label offset.
- 11. Make the necessary adjustments to the LABEL STOP POSITION.
- 12. Test again, repeat if necessary until label is in proper registration to the peeler plate tip.
- 13. Turn back on any options that may have been disabled for setup of this particular feature.

Note: The LABEL STOP POSITION distance CAN NOT be greater than half the length of the label.

• MISSING LABEL COMP – MISSING LABEL COMPENSATION

Missing Label Compensation is used to advance the label liner to compensate for a label that is "missing". This will allow the applicator not to skip a label application onto the product. This feature will not work if the application rate is too high & has limited benefits when in synchronous operation. Because of the variety of label sizes and products, testing will be required to determine if this feature is beneficial to your particular application.

- 1. Set basic applicator up first, refer to quick setup.
- 2. Ensure that applicator is operating properly before starting this procedure.
- 3. Set MISSING LABEL to "ON".
- 4. Set MISSING LABEL COMP "ON"
- 5. Set CONVEYOR LOCK "OFF".
- 6. Set LABEL AUTO POSN to "ON" if already SETUP, otherwise set to "OFF"
- 7. Operate applicator at desired label speed ensuring that the label is stopping in the proper position. Refer to LABEL STOP POSN #7.
- 8. Count the number of labels from the label sensor to the tip of the peeler plate.
- 9. Enter this number in the "LABEL TO PEELR"
- 10. Remove a label from the web before the label sensor. (Not between the sensor and the peeler plate.)
- 11. Operate the applicator several times until the missing label is at the peeler plate.
- 12. The applicator should now double feed a label in the next cycle.
- 13. If the applicator double feeds too soon, subtract one from the LABELS TO PEELR count.
- 14. If the applicator double feeds too late, add one to the LABELS TO PEELR count.
- 15. Remove another label and operate system at the same speed again.
- 16. Test again, repeat if necessary until the system operates properly.
- 17. Turn back on any options that may have been disabled for setup of this particular feature.

• START COMP DIST – START COMPENSATION DISTANCE

- 1. Set basic applicator up first, refer to quick setup
- 2. Set up STOP COMP DIST, refer to STOP COMPENSATION DISTANCE setup
- 3. Set ENCODER to "ON".
- 4. Set CONVEYOR LOCK to "ON" if in SYNCHRONOUS operation and "OFF" if in ASYNCHRONOUS operation.
- 5. Set TRIGGER DIST to 00.00
- 6. Set ENCODER LINES PER INCH (refer to ENC LINES set up)
- 7. Start system and apply label at the fastest desired speed. (system should not exceed maximum rate of applicator if in SYNCHRONOUS operation)
- 8. Move product switch or use TRIGGER DIST to register label to desired position. Keep trigger distance to a minimum for best results.
- 9. Change speed of system and operate it at the lowest speed desired.
- 10. Measure the offset in label placement.
- 11. Enter the measured offset into the START COMP DIST.
- 12. Operate system at the same low speed again and check label offset.
- 13. Make the necessary adjustments to the START COMP DIST.
- 14. Test again, repeat if necessary until label is in proper registration.
- 15. System should now hold registration throughout speed range.
- 16. Turn back on any options that may have been disabled for setup of this particular feature.

Note there will be some label drift if speed range is too great or top speed is out of range of applicator. There is also the normal placement tolerance that will affect the accuracy of the system.

• STOP COMP DIST – LABEL STOP COMPENSATION DISTANCE

- 1. Set basic applicator up first, refer to quick setup.
- 2. Set MISSING LABEL to "OFF".
- 3. Set encoder to "OFF" or if already interfaced to conveyor, start and run system together for testing.
- 4. Set START COMP DIST. To "OFF".
- 5. Set LABEL AUTO POSN to "ON". (label auto position)
- 6. Set STOP COMP DIST to 0.000
- 7. Operate applicator at maximum speed. Limit top speed to no more than required.
- 8. Manually move the label sensor to adjust the label stop position. The proper stop position will be with the leading edge of the label stopping flush with the tip of the peeler plate. The label stop position can also be electronically adjusted using the LABEL STOP POSITION. If this option is used the distance must be kept to a minimum. Adjusting the stop position using the LABEL STOP POSITION is NOT recommended when utilizing the STOP COMP DIST feature.
- 9. Operate the applicator at the lowest desired speed.
- 10. Measure the offset in label stop position. Enter the measured offset into the STOP COMP DIST.
- 11. Operate system at the same low speed again and check label offset.
- 12. Make the necessary adjustments to the STOP COMP DIST.
- 13. Test again, repeat if necessary until label is in proper registration.
- 14. Applicator should now hold registration throughout speed range.
- 15. Turn back on any options that may have been disabled for setup of this particular feature.

Note: There will be some label drift if speed range is too great or if at top speed the label is out of control. There is also the normal stop tolerance that will affect the accuracy of the applicator.

CALCULATING ENCODER LINES PER INCH (gearing)

There are two basic concepts utilized to interface the product ENCODER to the LabelMill control. One method utilizes a wheel mounted directly to an encoder. This wheel rests on the belt surface and rotates when the belt moves. The second method is to mechanically slave the encoder to the conveyor utilizing belts or a chain etc. Note that lines per revolution are also referred to as counts per revolution. The following is only a small sample of the many ways there is to couple an encoder to a product conveyor.

WHEEL-MOUNTED

- 1. Check encoder to determine the number of lines per revolution.
- 2. Measure diameter of contact wheel.
- 3. Multiply diameter of wheel by Pi, this will give circumference.
- 4. Divide encoder lines per revolution by circumference, this will net lines per inch.
- 5. Enter this number into menu "ENC LINES/INCH", note that this number needs to be between 25 & 500.

EXAMPLE

- 1. Encoder lines per revolution "1000".
- 2. Contact wheel diameter "6.00".
- 3. 6.00 x 3.14 = 18.84"
- 4. 1000/18.84 = 53.1 (rounding number to the 10^{th})
- 5. Enter 53.1 into "ENC LINES/INCH"

DIRECT DRIVE

- 1. Check encoder to determine the number of lines per revolution.
- 2. Determine the gear ratio of the encoder to the conveyor
- 3. Measure diameter of conveyor drive wheel.
- 4. Multiply diameter of wheel by Pi, this will give circumference.
- 5. Divide encoder lines per revolution by circumference, this will net lines per inch of wheel.
- 6. Multiply this number by the gear ratio, this will net lines per inch
- 7. Enter this number into menu "ENC LINES/INCH", note that this number needs to be between 25 & 500.

EXAMPLE

- 1. Encoder lines per revolution "1000".
- 2. Gear ratio is 2 to 1.
- 3. Conveyor drive wheel diameter "6.00".
- 4. 6.00 x 3.14 = 18.84"
- 5. 1000/18.84 = 53.079
- 6. $53.079 \times 2 = 106.2$ (rounding number to the 10^{th})
- 7. Enter 106.2 into "ENC LINES/INCH"

• TRIGGER DIST – TRIGGER DISTANCE

TRIGGER DISTANCE is used in conjunction with the encoder feature. Trigger distance is similar to product delay in that it is used to electronically move the placement of the label on the product. When the encoder feature is used, the product delay feature is rendered inactive. Trigger distance will move the label placement in inches (00.00).

- 1. Set basic applicator up first, refer to quick setup
- 2. Ensure that the applicator is operating properly before starting this procedure.
- 3. This feature requires the use of an encoder. The appropriate encoder features should be setup prior to this feature.
- 4. Set ENCODER to "ON".
- 5. Set CONVEYOR LOCK to "ON" if in SYNCHRONOUS operation and "OFF" if in ASYNCHRONOUS operation.
- 6. Set TRIGGER DIST to 00.00
- 7. Start system and apply label at the desired speed.
- 8. Check the placement of the label on the product.
- 9. Measure the OFFSET of the label placement. Note: A label CAN NOT be advanced on the product ONLY moved "back" since the applicator can only delay the product signal.
- 10. Apply the measured offset to the TRIGGER DISTANCE or if too great it may be necessary to physically move the product switch. Keep trigger distances to a minimum for best results.
- 11. Operate system again and measure offset.
- 12. Enter the measured offset, IF ANY, into the TRIGGER DISTANCE.
- 13. Test again, repeat if necessary until label is in proper registration.
- 14. Turn back on any options that may have been disabled for setup of this particular feature.

• BROKEN WEB (Only Available with Custom Label Sensor)

BROKEN WEB feature is used to detect the breakage of the label web. Note this feature will not work with clear labels. The label sensor detects the broken web by comparing the difference in the opacity of the label liner to NO label liner. The opacity of the label and liner are displayed in volts.

- 1. Set basic applicator up first, refer to quick setup.
- 2. Ensure that the applicator is operating properly before starting this procedure.
- 3. While in the normal run display, push the down arrow twice.
- 4. The display should now show GAP VOLT.
- 5. Position the label in the label sensor until the maximum voltage is displayed. (LABEL GAP)
- 6. Record the label gap voltage.
- 7. Remove the label and liner from the label sensor.
- 8. With the label & liner removed record the BROKEN WEB GAP VOLTAGE
- 9. The BROKEN WEB voltage should be at least .900 volts higher then the LABEL gap voltage.
- 10. If there is not .900 volts difference this option may not work with the selected labels.
- 11. Subtract .700 from the BROKEN WEB voltage.
- 12. This new Calculated Broken web voltage is the reference voltage that will be entered into the control.
- 13. Enter programming and advance to menu ALARMS.
- 14. Turn BROKEN WEB "ON"
- 15. SENSE VOLT LVL enter calculated broken web voltage.
- 16. The control is now set to detect a broken web and will output an alarm if a broken web is detected or if you remove the label stock.
- 17. Turn back on any options that may have been disabled for setup of this particular feature.

• FEED ERROR

FEED ERROR is used in the tamp mode (asynchronous mode). This feature detects the presents of a label on the tamp pad by utilizing a fiber-optic sensor embedded into the tamp pad. The control "looks" for the tamp pad to be clear before it feeds a label and "blocked" after it feeds the label. The system will display a "FEED ERROR" fault if the label does not make it onto the tamp pad properly, does not make it onto the product and stays on the tamp pad or gets "stuck" to tamp pad.

- 1. Set basic applicator up first, refer to quick setup.
- 2. Ensure that the applicator is operating properly before starting this procedure.
- 3. With the label on the tamp pad, check to see if the red light on the label present detector is on.
- 4. If the light is NOT on, the sensor or the label feed may require adjustment.
- 5. Set FEED ERROR to "ON".
- 6. Cycle system one time.
- 7. Verify proper operation.
- 8. Test again, repeat if necessary until the system operates properly.
- 9. Turn back on any options that may have been disabled for setup of this particular feature.

• MANUAL-SET GAP (No Longer Used with Standard Label Sensor)

MANUAL-SET GAP is used to manually set the label sensor to the label stock that is webbed in the applicator. This step is automatically taken care of in the AUTO SETUP mode covered in QUICK SETUP chapter. If the values the applicator calculated are in question, the following will allow manual calibration of the label.

- 1. Go to MANUAL –SET GAP press "enter"
- 2. Move label in label sensor gap until the LOWEST value is displayed press "enter" (center of label)
- 3. Move label in label sensor gap until the HIGHEST value is displayed press "enter" (gap between labels)
- 4. GAP THRESHOLD is now displayed. This is the difference between the highest value and the lowest value.
- 5. GAP THRESHOLD can be manually over ridden for difficult labels.
- LABEL LENGTH

LABEL LENGTH is automatically calculated and entered when utilizing auto set up. If the length of the label is known and does not match the displayed value, this can be manually entered.

• LABEL GAP LENGTH

LABEL GAP LENGTH is the space between two labels. LABEL GAP LENGTH is automatically calculated and entered when utilizing auto set up. If the gap length of the label web is know and does not match the displayed value this can be manually entered. This distance is USUALLY .125".

HOW TO SET UP AN ASYNCHRONOUS APPLICATION

• "TAMP" WITHOUT AN ENCODER

Determine the following and select it in the software

- 1. Type of application mode. (Tamp)
- 2. Tamp before or after feed (before feed is standard)
- 3. Enter a value in the tamp duration (start with 00.20)
- 4. Set head up limit switch, normally open is standard
- 5. Use the product delay to "MOVE" the label on the product

The asynchronous application mode is used to apply labels to products that are either stationary or moving at a constant speed when the label application is to take place.

• "BLOW" WITHOUT AN ENCODER

Determine the following and select it in the software

- 1. Type of application mode. (Blow)
- 2. Blow before or after feed (before feed is standard)
- 3. Enter a value in the tamp duration (start with 00.10)
- 4. Set head up limit switch to NO TAMP SWITCH
- 5. Use the product delay to "MOVE" the label on the product

The asynchronous application mode is used to apply labels to products that are either stationary or moving at a constant speed when the label application is to take place.

• TAMP OR BLOW WITH A ENCODER

Determine the following and select it in the software

- 1. Type of application mode. (Tamp, or Blow) (refer to above)
- 2. Tamp or blow before or after feed (before feed is standard)
- 3. Enter a value in the tamp duration (start with 00.20)
- 4. Turn encoder ON
- 5. Conveyor "LOCK" should be OFF
- 6. Encoder OVERRIDE is used to fine tune the GEARING RATIO between applicator and conveyor
- 7. Trigger distance is used to "MOVE" label on product (product delay is disabled)
- 8. Enter a Start Comp value. START Comp is used to compensate for label drift when speed of conveyor changes. To calculate this refer to the section on "Start Compensation"
- 9. ENC LINES/INCH enter the proper "lines per inch" to match encoder output to conveyor speed. To calculate "lines per inch", refer to the section on Gearing.

HOW TO APPLY MULTIPLE LABELS TO A SINGLE PRODUCT

• WHEN UTILIZING A ENCODER

This section will explain how to apply more than one label to a single product with a single start signal. TRIGGER DISTANCE will move the label placement in inches (00.00) for the **FIRST LABEL**. MULTIPLE FEED will allow you to select how many labels to be applied. Note that when the start signal "goes false" this feature is reset. When the encoder feature is used, the product delay feature is rendered inactive.

- 1. Set basic applicator up first, refer to quick setup
- 2. Ensure that the applicator is operating properly before starting this procedure.
- 3. This feature requires the use of an encoder. The appropriate encoder features should be setup prior to this feature.
- 4. Set ENCODER to "ON".
- 5. Set CONVEYOR LOCK to "ON" if in SYNCHRONOUS operation and "OFF" if in ASYNCHRONOUS operation.
- 6. Set TRIGGER DIST to 00.00 (refer to TRIGGER DISTANCE setup)
- 7. Start system and apply label at the desired speed.
- 8. Check the placement of the label on the product.
- 9. Measure the OFFSET of the label placement. Note: A label CAN NOT be advanced on the product ONLY moved "back" since the applicator can only delay the product signal.
- 10. Apply the measured offset to the TRIGGER DISTANCE or if too great it may be necessary to physically move the product switch. Keep trigger distances to a minimum for best results.
- 11. Operate system again and measure offset.
- 12. Enter the measured offset, IF ANY, into the TRIGGER DISTANCE.
- 13. Test again, repeat if necessary until label is in proper registration.
- 14. Go to MULTIPLE FEED in menu #1 and set the number of labels to be applied to the product.
- 15. Set the Distance between each label by measuring from the front of the product to where you would like the label to be applied.
- 16. Set this distance in the 0 to 2 and repeat this for each label to be applied. 0 to 3, 0 to 4, etc.
- 17. Test the placement of the label and adjust as necessary. Note: The measurements entered are reference only and may not correspond exactly to the actual label offset measurements.
- 18. Note: TRAILING EDGE TRIGGER will NOT work with this feature!
- 19. Note: Product speed fluctuations can effect label placement.
- 20. Turn back on any options that may have been disabled for setup of this particular feature.

• WHEN NOT UTILIZING A ENCODER

Product delay is similar to trigger distance in that it is used to electronically move the placement of the **FIRST** label on the product. Product delay will move the label placement in time (00.000). Because the product delay feature utilizes time, the speed of the product MUST be constant and consistent. This section will explain how to apply more than one label to a single product with a single start signal. MULTIPLE FEED will allow you to select how many labels to be applied. Note that when the start signal "goes false" this feature is reset.

- 1. Set basic applicator up first, refer to quick setup
- 2. Ensure that applicator is operating properly before starting this procedure.
- 3. This feature requires the use of an encoder. The appropriate encoder features should be setup prior to this feature.
- 4. Set ENCODER to "OFF".
- 5. Set CONVEYOR LOCK to "OFF" if in ASYNCHRONOUS operation.
- 6. If in SYNCHRONOUS operation PRODUCT DELAY WILL NOT WORK
- 7. Set Product delay to 00.000
- 8. Start system and apply label at the desired speed.
- 9. Check the placement of the label on the product.
- 10. Measure the OFFSET of the label placement. Note: A label CAN NOT be advanced on the product ONLY moved "back" since the applicator can only delay the product signal.
- 11. Apply a small delay to the product delay or if too great, it may be necessary to physically move the product switch. Keep product delays to a minimum for best results.
- 12. Operate system again and measure offset.
- 13. Apply a small delay to the product delay or reduce if too much.
- 14. Test again, repeat if necessary until label is in proper registration.
- 15. Go to MULTIPLE FEED in menu #1 and set the number of labels to be applied to the product.
- 16. Set the Distance between each label entering a time (0.000) into "INTERVAL DELAY"
- 17. Test the placement of the labels and adjust as necessary. Note: The spacing between each label will be equal. With this feature the space between labels **can not** be set individually.
- 18. Note: TRAILING EDGE TRIGGER will NOT work with this feature!
- 19. Note: Product speed fluctuations can effect label placement.
- 20. Turn back on any options that may have been disabled for setup of this particular feature.

DESCRIPTION OF I/O

All user inputs and outputs are "SINKING" type.

Status display legend.

INPUTS			OUTPUTS				
S	Р	Н		А	F	V	Т
SMART TAMP	PRODUCT SENSOR	TAMP SENSOR		AIR ASSIST SOL	FLAG SOL	VACUUM SOL	TAMP SOL

Control Interface Connections Shown Below

REMOTE TRIGGER CONNECTOR (PRODUCT SWITCH #1)	P1 PIN #	I/O	I/O Monitor ADDRESS
+24vdc	1		
+24vdc	2		
Trigger Input #1	3	Input	X0.0
Pre-print trigger (#2)	4	Input	X0.1
24v Common	5		
24v Common	6		
Shield			

REMOTE TRIGGER CONNECTOR (PRODUCT SWITCH #2)	P2 PIN #	I/O	I/O Monitor ADDRESS
+24vdc	1		
+24vdc	2		
Pre-print trigger (#2)	3	Input	X0.1
Trigger Input #1	4	Input	X0.0
24v Common	5		
24v Common	6		
Shield			

HEAD-UP / AUX IN	P3 PIN #	I/O	I/O Monitor ADDRESS
+24vdc	1		
+24vdc	2		
Head – Up/ Index Dwell	3	Input	X0.2
Smart Tamp	4	Input	X0.3
24v Common	5		
24v Common	6		
Shield			

SMART TAMP	P4	I/O	
	PIN #		ADDRESS
+24vdc	1		
+24vdc	2		
AUX IN 9	3		X2.5
Smart Tamp	4		X0.3
24v Common	5		
24v Common	6		
SHIELD			

LABEL SENSOR	P6 PIN #	I/O	I/O Monitor ADDRESS
Clear Label Detector	1	Input	X0,4
24v Common	2		
(+5dvc)	3		
Take up output	4	H.0.	Y2,7
Logic Gnd	5		
Sensor Emitter (+)	6		
Sensor Collector (-)	7		
+24vdc	8		

SOLENOIDS	P5 PIN #	I/O	I/O Monitor ADDRESS
Aux Output #7	1	Output	Y0,4
+24 Volt	2		
No connection	3		
Air Assist Sol 24vdc	4	Output	Y0.0
Vacuum Sol 24vdc	5	Output	Y0.2
Tamp Sol 24vdc	6	Output	Y0.3
Flag Sol 24vdc	7	Output	Y0.1
Shield			

All three DB-15 Connectors are Identical

LIGHT BAR/AUXILIARY CONNECTOR DB-15 FEMALE	P7 PIN #	INPUT/ OUTPUT	ADDRESS	
+24VDC	1			
+24VDC	2			
24 COM	3			
24 COM	4			
LOW LABEL IN	5	I	X1,3	
ERROR LITE (Red light)	6	0	Y0,7	
LOW LABEL (Yellow light)	7	0	Y1,0	
RUN STATUS OK (Green Light)	8	0	Y1,1	
TAMP SYNC OUT	9	0	Y1,2	
INHIBIT IN	10	I	X1,4	
LABEL FEED ERROR IN	11	I	X1,5	
Repeat Last label In	12	I	X1,6	
Servo Tamp Fault Input	13	I	X3,4	"Head down fault"
Applicator in cycle output (Applicator Busy)	14	0	Y1,3	Paralleled with Y2,4
AUX OUT 6	15	0	Y1,4	

AUX I/O	P9	INPUT/		
DB25 Female CONNECTOR #J1	PIN #	OUTPUT	ADDRESS	
+24VDC	1			
+24VDC	2			
24V COM	3			
24V COM	4			
AUX IN 7	5	I	X3,5	
2 nd Tamp Output (Stand alone CW module)	6	0	Y1,7	
2 nd Tamp Head Up Switch (CW module)	7	I	X2,2	
2 nd Tamp Trigger in (photo eye) (CW module)	8	I	X2,3	
E-Stop PB Input	9			pin 9 and 10 tied for E-stop
E-Stop Reset PB input	10			
E-Stop PB's Common	11			
1520 TAKE-UP MOTOR	12	0	Y2,0	
AUX IN 10	13	I	X2,4	
AUX IN 8	14	I	X3,6	
AUX IN 1	15	I	X2,6	
AUX IN 2	16	I	X2,7	
AUX IN 3	17	I	X3,0	
AUX IN 4	18	I	X3,1	
AUX IN 5	19	I	X3,2	
AUX IN 6	20	I	X3,3	
AUX OUT 1	21	0	Y2,1	
AUX OUT 2	22	0	Y2,2	
AUX OUT 3	23	0	Y2,3	
Applicator in cycle output (Applicator Busy)	24	0	Y2,4	Paralleled with Y1,3
Batch Done	25	0	Y1.6	

AUX I/O	P10	INPUT/		
DB25 Male CONNECTOR #J2	PIN #	OUTPUT	ADDRESS	
AUX IN 10	1	I	X2,4	
1520 TAKE-UP MOTOR	2	0	Y2,0	
E-Stop PB's Common	3			24V RELAY CIRCUIT
E-Stop Reset PB input	4			24V RELAY CIRCUIT
E-Stop PB Input	5			24V RELAY CIRCUIT
2 nd Tamp Trigger in (photo eye) (CW module)	6	I	X2,3	
2 nd Tamp Head Up Switch (CW module)	7		X2,2	
2 nd Tamp Output (Stand alone CW module)	8	0	Y1,7	
AUX OUT 5	9	0	Y2,5	
24V COM	10			
24V COM	11			
+24VDC	12			
+24VDC	13			
Batch Done	14	0	Y1,6	
Applicator in cycle output (Applicator Busy)	15	0	Y2,4	Paralleled with Y1,3
AUX OUT 3	16	0	Y2,3	
AUX OUT 2	17	0	Y2,2	
AUX OUT 1	18	0	Y2,1	
AUX IN 7	19	I	X3,5	
AUX IN 5	20	I	X3,2	
AUX IN 4	21	I	X3,1	
AUX IN 3	22	I	X3,0	
AUX IN 2	23		X2,7	
AUX IN 1	24		X2,6	
AUX IN 8	25		X3,6	

E-STOP Wiring (DB-25 FEMALE / J1 ONLY)

NOTE: Input X3,7 IS USED INTERNALLY FOR MCR STATUS

PRINT AND APPLY INTERFACE 14 pin Centronics	P11 PIN #	I/O	I/O Monitor ADDRESS
Paper End	1	Input	X0.5
Printer Ground	2		
Ribbon End	3	Input	X0.6
Printer Error	4	Input	X0.7
Print Start	5	Output	Y0.5
Print End	6	Input	X1.0
Reprint	7	Output	Y0.6
	8		
ONLINE (Sato Only)	9	input	X1.0
Ribbon Near End	10	Input	X1.2
Buffer Ready / Zebra Only	11	input	X1.7
N.C.	12		
+5vdc From Printer	13		
N.C.	14		
Shield			

CONVEYOR ENCODER DB9 Male	P12 PIN #	
2ENC A+	1	
2ENC A-	2	
2 ENC B+	3	
2 ENC B-	4	
+5 vdc	5	
GND	6	
Shield	7	
NC	8	
NC	9	

COMM. 2 RS- 232 DB9 Female	P13 PIN #	INPUT/ OUTPUT	ADDRES S
Serial Plus Port			
+24	1		
RS232 XMIT	2		
RS232 RCV	3		
24C	4		
GND	5		
Aux Out	6	0	Y1,5
Aux In	7		X2,1
NC	8		
SHIELD	9		

COMM. 1 RS-232 DB9 Female	P14 PIN #
NC	1
RS232 XMIT	2
RS232 RCV	3
NC	4
GND	5
485+	6
485-	7
NC	8
SHIELD	9

Display COMM. 8 Pin RJ 422 Touch Screen HLI-200	P16 PIN #	
RX+	1	
RX-	2	
Touch Sense (GND)	3	
Fault line O.C.	4	
GND	5	
GND / +24	6	Jumper / fuse
TX+	7	
TX-	8	

Display COMM. 6 Pin RJ	P17 PIN #
HLI-100	
232 Hand Held	
ТХ	1
RX	2
GND	3
GND	4
+24	5
+24	6

SERVO MOTOR CONNECTIONS FOR REFERENCE ONLY

SERVO MOTOR CONNECTOR DB15 FEMALE	P2 PIN #
MTR ENCODER A	1
MTR ENCODER B	2
GND	3
Hall V	4
Hall W	5
	6
+5V	7
GND	8
MTR ENCODER / A	9
MTR ENCODER / B	10
	11
Hall U	12
	13
+5V	14
GND/Shield	15

SERVO MOTOR Amp 9 PIN LM1512	PSM PIN #
	1
	2
	3
Motor u	4
Ground / Shield	5
Motor v	6
	7
	8
Motor w	9

1512 SETUP DIP SWITCH COMMUNICATIONS ADDRESS

HOW TO SET LABELER COMMUNICATIONS ADDRESS FOR A 1512

WHEN USING MULTIPLE LABELERS WITH ONE TS204 TOUCHSCREEN, EACH LABELER MUST BE SET UP WITH A UNIQUE COMMUNICATIONS ADDRESS. UP TO FOUR LABELERS CAN BE USED WITH ONE TS204

SWITCH LOCATION ON= UP OFF= DOWN

SWITCH 1	SWITCH 2	=	LABELER
OFF	OFF	Π	#1
ON	OFF	=	#2
OFF	ON	=	#3
ON	ON	=	#4

DIP SWITCH (S1) IS LOCATED ON MOTHER BOARD. ACCESS TO DIP SWITCH REQUIRES REMOVAL OF SIDE PANEL OF CONTROL BOX.

SECTION 5

CLEANING & MAINTENANCE

General Cleaning & Maintenance	65
Troubleshooting	66
Fault Codes	67
Replacing the Main Power Fuse	68

GENERAL CLEANING & MAINTENANCE

The system should be inspected and cared for properly before operation begins. Typical inspection includes confirming correct supply spool loading, web path, checking air pressure, ensuring rollers are clean and free of adhesives, checking pinch assembly operation, and label feed position. Do not attempt to operate system if not in good working order.

Preventative maintenance procedures should be performed at least once per week. This includes removing adhesive and residual build-up from system components, cleaning the label sensor, cleaning the tamp pad, and cleaning the pinch rollers.

To clean adhesive or residual build-up off of guide rollers, brake arms, or the pinch roller assemblies, use only isopropyl alcohol. Other chemicals or abrasive products can cause damage to the system, resulting in poor operation. Do not use sharp objects or aggressive solvents on the pinch roller assemblies to remove labels or adhesive!

Use clean, dry, compressed air to remove dust, dirt, or label debris from the label sensor, if applicable. <u>Do not</u> use any abrasive objects to clean the sensor slot, as it will cause un-repairable damage to the sensor.

The tamp pad should be cleaned with isopropyl alcohol to remove adhesive or debris build-up. The pad must be clean and smooth for the labels to feed properly. If adhesive is blocking any vacuum holes, use isopropyl alcohol to break down the adhesives and clean the holes. <u>Do not use sharp objects or aggressive solvents on the tamp pad assembly to remove labels or adhesive!</u>

TROUBLESHOOTING GUIDE

If the system malfunctions, it is necessary to determine where the problem exists in a normal sequence of operation. Possible error conditions are listed in the left-hand column to provide a systematic approach to troubleshooting.

Error Condition	Possible Cause	Corrective Action
Unit will not turn on.	A. Blown Main Fuse	Check main power fuse and replace if necessary
Air system will not operate.	A. No air pressure. B. Plugged hose. C. Faulty valve.	Check air supply and filter Fix or replace hose Consult factory
Take-up unit does not turn.	A. Friction plate failure in clutch. B. Mechanical failure in clutch.	Consult Factory
Waste web tension too loose.	A. Clutch tension too low.	Adjust clutch
Waste web breaks.	 A. Clutch adjusted too tight. B. Machine Webbed wrong. C. Low quality webbing. D. Friction plate failure in clutch. E. Mechanical failure in clutch. 	Adjust clutch Re-web system Consult label manufacturer Consult factory Consult factory
Label double feeds.	A. Label sensor out of adjustment	Calibrate label sensor

FAULT CODES

DISPLAYED FAULT	DESCRIPTION	CORRECTIVE ACTION
Memory Checksum	Data lost in battery SRAM	Consult factory or service provider
Missing Label	Too many labels missing on web	Check label stock
Following Error	Servo motor stalled (Load too high for motor)	Check acceleration value Check for proper label webbing Lower speed
Head Up Fault	Head up limit switch on tamp did not trigger	Check for proper adjustment of head up limit switch Check air to system
Head Down Fault	Head up limit switch failed to switch during the tamp cycle	Tamp duration too small Faulty limit switch Check air to system
Label Present Fault / Feed Error	Label present sensor failed to Detect label	Feed error option enable without hardware attached. Label present sensor faulty or miss adjusted
Emergency-Stop	E-Stop on Labeler is "ON"	Remove the E-Stop Condition
Motor Temp Exceeded	Servo Motor Over Heated	Cool Servo Motor / Cycle Power
Servo Drive Fault	Servo motor stalled (Load too high for motor)	Check acceleration value Check for proper label webbing Lower speed
Broken Web Fault	Label Web Broken Label Sensor Blocked Labeler feed 2X Programmed Label Length and Failed to Detect a Label	Re-Web Labeler Check Label Sensor Turn Off Broken Web Feature Incorrect Value Entered in Label Length in Control
Waiting For Servo	Servo Drive is Powering Up	Wait for Servo Drive

REPLACING THE MAIN POWER FUSE

The circuitry is protected from a current overload by GMA 10A a slow blow fuse. Should the applicator fail to operate, the condition of this fuse should be checked. If the fuse is open, the cause of the overload condition must be determined and corrected prior to replacing the fuse. NEVER replace the fuse with one of a greater AMP rating. The specified rating has been selected to prevent damage and/or injury.

ACTIONS TO REPLACE THE MAIN FUSE

- 1. Set the main power switch to the OFF position.
- 2. Disconnect the AC power cable from the rear of the console.
- 3. Locate the fuse holder/power cord assembly.
- 4. Gently press down the fuse holder cover while pulling away from the console.
- 5. Replace with the spare fuse provided in the holder.

LM1512 AUTOMATIC LABEL APPLICATOR OPERATIONS MANUAL

Copyright and Trademarks

Copyright ©2022 LabelMill All rights reserved. All trademarks and brand names are the property of their respective owners.

LabelMill 2416 Jackson St. Savanna, IL 61074

Phone: (800) 273-4707; Fax (815) 273-7074 **www.labelmill.com** info@labelmill.com

Page 69 Made in the U.S.A.